Photosynthèse Naturelle : source d'inspiration pour les chimistes

ally.aukauloo@u-psud.fr

Université Paris Sud – Université Paris Saclay

Insitut Joliot, CEA Saclay

Innovation Bioinspirée, Iledescience 16/04/2019

Equipe de Photosynthèse Artificielle UPS-CEA

ICMMO-UPS

CEA - Institut Joliot

Dr. Marie Sircoglou MCF

Dr. Zakaria Halime CR

Dr. Winfried Leibl Directeur de recherches

Dr. Annamaria Quaranta Ingénieur de Recherche

Dr. Christian Herrero (Ingénieur CNRS – RPE)

Dr. Régis Guillot (Ingénieur CNRS- Cristallographie)

PhD: Stéphanie Cherdo, Stéphanie Mendes, Sujit Raj Seth, Clémence Ducloiset, Alison Tebo, Nhat Tam Vo, Philipp Gotico, Asma Khadharoui, Younju Ro, Adele Trapali

PostDoc: Julien Buendia, Shyamal Das, Rajah Farran, Khaled Cheaib, Tania Tibiletti, Jully Patel, Maria Castellano

Photosynthèse Artificielle

Carbone dans tous états...

Half-electrochemical reactions	Potential (V vs. SHE)
$CO_2 + e^- \rightarrow CO_2$	-1.90
$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$	-0.53
$CO_2 + 2H^+ + 2e^- \rightarrow HCO_2H$	-0.61
$CO_2 + 4H^+ + 4e^- \rightarrow HCHO +$	-0.48
H_2O	
$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH +$	-0.38
H_2O	
$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + H_2O$	-0.24
$2H^+ + 2e^- \rightarrow H_2$	-0.41

Table 1 Known pathways of CO2 fixation by microbes

Pathway name	CO ₂ -fixing enzymes	Examples of Microbes	O ₂ sensitivity
Calvin-Benson-Bassham Cycle	RubisCO	Aerobic autotrophic bacteria (cyano- bacteria, purple sulfur bacteriaetc.)	Tolerant
Reductive tricarboxylic	2-oxoglutarate synthase, isocitrate	Bacteria such as Chlorobium sp. and	Sensitive
acid cycle	dehydrogenase, pyruvate synthase, PEP carboxylase	Desulfobacter sp.	
Reductive acetyl-CoA pathway	Acetyl-CoA synthase, formate dehydrogenase	Methanogenic archaea and acetogenic bacteria	Sensitive
3-Hydroxypropionate/ malyl-CoA cycle	Acetyl-CoA carboxylase, Propionyl-CoA carboxylase	Phototrophic bacterium, Chloroflexus	Sensitive
3-Hydroxypropionate/	Acetyl-CoA carboxylase, Propionyl-CoA	Autotrophic Crenarchaeota,	Microaerobic
4-hydroxybutyrate cycle	carboxylase	Sulfolobales, Metallospharea sedula	conditions
Dicarboxylate/	Pyruvate synthase, Phosphoenol	Archaea such as Ignicoccus hospitalis,	Sensitive
4-hydroxybutyrate cycle	pyruvate carboxylase	Thermoproteus neutrophilus	

La nature n'est pas pressée...

 $3 CO_2 + 9 ATP + 6 NADPH + 6 H^+ \rightarrow C_3H_6O_3$ -phosphate + 9 ADP + 8 P_i + 6 NADP⁺ + 3 H₂O

Leçons de la nature: Réduction de O₂, NO₂, SO₃²-

Cytochrome c Oxidase

Nitrite reductase

Sulfite reductase

A. Aukauloo

Complexes porphyriniques pour la réduction du CO₂...

Porous Supramolecule

. . . .

Chang Angew. Chem. 2019

Nocera Organometallics 2018

Robert PNAS 16

$$CO_2 + 2 e^- + 2H^+ \rightarrow CO + H_2O$$

A. Aukauloo

Stabilisation par voie électrostatique

Arieh Warshel Nobel Prize 2013

Porphyrins with embarked Ionic liquids

lère Stratégie: Effet électrostatique

Cyclic voltammogram of 1mM FeTPP; 1mM FeTPPF₈, 1mM FeTPPF₂₀; in 9:1 DMF:H₂O (a) under Ar, (b) under CO₂

Propriétés électrocatalytiques

Performance électrocatalytique éxaltée!

- ☐ Electrocatalytic CO₂ reduction to CO in water
- ☐ No need of external proton source
- Overpotential of 420 mV
- ☐ TOF of 240 000 s⁻¹

2^{ème} stratégie. Liaisons Hydrogène

2^{ème} stratégie. Modèle biomimétique de la CODH

A. Aukauloo

Manipulation de la seconde sphère de coordination

Substrate activation

A. Aukauloo

Synthèse et caractérisation

Propriétés électrocatalytiques

Captage du CO₂...

In absence of proton

$$E_p = E^0 - 0.78 \frac{RT}{F} + \left(\frac{RT}{2F}\right) \ln \frac{RTk[CO_2]}{Fv}$$

$$k_{CO_2}(M^{-1} s^{-1})$$

FeTPPUr	58.0
reippui	58. U

FeTPPAm 7.6

FeTPP 6.8

Enhanced binding constant

A. Aukauloo

H₂O comme source de protons!!

Water as proton source!

A. Aukauloo

Performance électrochimique

- ✓ Increased CO_2 binding rate ($k = 58 \text{ M}^{-1}\text{s}^{-1}$)
- ✓ Overpotential of 430 mV
- **✓** TOF of 2 760 s⁻¹
- ▼ TON of 3 280 000
- √ 91% Faradaic efficiency

CO₂ Reduction

International Edition: DOI: 10.1002/anie.201814339 German Edition: DOI: 10.1002/ange.201814339

Second-Sphere Biomimetic Multipoint Hydrogen-Bonding Patterns to Boost CO₂ Reduction of Iron Porphyrins

Philipp Gotico, Bernard Boitrel, Régis Guillot, Marie Sircoglou, Annamaria Quaranta, Zakaria Halime,* Winfried Leibl, and Ally Aukauloo*

3 stratégie: Valorisation du monoxide de carbone

Valorisation du monoxide de carbone

Artificial Mimic

COware® two-chamber reactor was utilized to explore the possibility of a direct use of CO₂ in carbonylation chemistry under mild conditions

- ✓ One pot: avoid handling of toxic CO
- ✓ Eliminates the need for expensive CO precursors
- ✓ Lab-scale access for future researches on merging artificial photosynthesis and transformative chemistry

Ar = aryl; X = halide; Nu = nucleophile

Cat

Cat

Valorisation du monoxide de carbone

- ✓ Sensitization in the visible region
- ✓ Electron transfer from the Ru photosensitizer to Re catalyst
- **✓** Optimized TON of 800

Artificial Photosynthesis Group

